\(\int (a+b \sec ^2(e+f x))^{3/2} \tan (e+f x) \, dx\) [391]

   Optimal result
   Rubi [A] (verified)
   Mathematica [C] (verified)
   Maple [A] (verified)
   Fricas [B] (verification not implemented)
   Sympy [F]
   Maxima [F]
   Giac [B] (verification not implemented)
   Mupad [B] (verification not implemented)

Optimal result

Integrand size = 23, antiderivative size = 78 \[ \int \left (a+b \sec ^2(e+f x)\right )^{3/2} \tan (e+f x) \, dx=-\frac {a^{3/2} \text {arctanh}\left (\frac {\sqrt {a+b \sec ^2(e+f x)}}{\sqrt {a}}\right )}{f}+\frac {a \sqrt {a+b \sec ^2(e+f x)}}{f}+\frac {\left (a+b \sec ^2(e+f x)\right )^{3/2}}{3 f} \]

[Out]

-a^(3/2)*arctanh((a+b*sec(f*x+e)^2)^(1/2)/a^(1/2))/f+1/3*(a+b*sec(f*x+e)^2)^(3/2)/f+a*(a+b*sec(f*x+e)^2)^(1/2)
/f

Rubi [A] (verified)

Time = 0.10 (sec) , antiderivative size = 78, normalized size of antiderivative = 1.00, number of steps used = 6, number of rules used = 5, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.217, Rules used = {4224, 272, 52, 65, 214} \[ \int \left (a+b \sec ^2(e+f x)\right )^{3/2} \tan (e+f x) \, dx=-\frac {a^{3/2} \text {arctanh}\left (\frac {\sqrt {a+b \sec ^2(e+f x)}}{\sqrt {a}}\right )}{f}+\frac {a \sqrt {a+b \sec ^2(e+f x)}}{f}+\frac {\left (a+b \sec ^2(e+f x)\right )^{3/2}}{3 f} \]

[In]

Int[(a + b*Sec[e + f*x]^2)^(3/2)*Tan[e + f*x],x]

[Out]

-((a^(3/2)*ArcTanh[Sqrt[a + b*Sec[e + f*x]^2]/Sqrt[a]])/f) + (a*Sqrt[a + b*Sec[e + f*x]^2])/f + (a + b*Sec[e +
 f*x]^2)^(3/2)/(3*f)

Rule 52

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> Simp[(a + b*x)^(m + 1)*((c + d*x)^n/(b*(
m + n + 1))), x] + Dist[n*((b*c - a*d)/(b*(m + n + 1))), Int[(a + b*x)^m*(c + d*x)^(n - 1), x], x] /; FreeQ[{a
, b, c, d}, x] && NeQ[b*c - a*d, 0] && GtQ[n, 0] && NeQ[m + n + 1, 0] &&  !(IGtQ[m, 0] && ( !IntegerQ[n] || (G
tQ[m, 0] && LtQ[m - n, 0]))) &&  !ILtQ[m + n + 2, 0] && IntLinearQ[a, b, c, d, m, n, x]

Rule 65

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> With[{p = Denominator[m]}, Dist[p/b, Sub
st[Int[x^(p*(m + 1) - 1)*(c - a*(d/b) + d*(x^p/b))^n, x], x, (a + b*x)^(1/p)], x]] /; FreeQ[{a, b, c, d}, x] &
& NeQ[b*c - a*d, 0] && LtQ[-1, m, 0] && LeQ[-1, n, 0] && LeQ[Denominator[n], Denominator[m]] && IntLinearQ[a,
b, c, d, m, n, x]

Rule 214

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[-a/b, 2]/a)*ArcTanh[x/Rt[-a/b, 2]], x] /; FreeQ[{a, b},
x] && NegQ[a/b]

Rule 272

Int[(x_)^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Dist[1/n, Subst[Int[x^(Simplify[(m + 1)/n] - 1)*(a
+ b*x)^p, x], x, x^n], x] /; FreeQ[{a, b, m, n, p}, x] && IntegerQ[Simplify[(m + 1)/n]]

Rule 4224

Int[((a_) + (b_.)*((c_.)*sec[(e_.) + (f_.)*(x_)])^(n_))^(p_.)*tan[(e_.) + (f_.)*(x_)]^(m_.), x_Symbol] :> With
[{ff = FreeFactors[Sec[e + f*x], x]}, Dist[1/f, Subst[Int[(-1 + ff^2*x^2)^((m - 1)/2)*((a + b*(c*ff*x)^n)^p/x)
, x], x, Sec[e + f*x]/ff], x]] /; FreeQ[{a, b, c, e, f, n, p}, x] && IntegerQ[(m - 1)/2] && (GtQ[m, 0] || EqQ[
n, 2] || EqQ[n, 4] || IGtQ[p, 0] || IntegersQ[2*n, p])

Rubi steps \begin{align*} \text {integral}& = \frac {\text {Subst}\left (\int \frac {\left (a+b x^2\right )^{3/2}}{x} \, dx,x,\sec (e+f x)\right )}{f} \\ & = \frac {\text {Subst}\left (\int \frac {(a+b x)^{3/2}}{x} \, dx,x,\sec ^2(e+f x)\right )}{2 f} \\ & = \frac {\left (a+b \sec ^2(e+f x)\right )^{3/2}}{3 f}+\frac {a \text {Subst}\left (\int \frac {\sqrt {a+b x}}{x} \, dx,x,\sec ^2(e+f x)\right )}{2 f} \\ & = \frac {a \sqrt {a+b \sec ^2(e+f x)}}{f}+\frac {\left (a+b \sec ^2(e+f x)\right )^{3/2}}{3 f}+\frac {a^2 \text {Subst}\left (\int \frac {1}{x \sqrt {a+b x}} \, dx,x,\sec ^2(e+f x)\right )}{2 f} \\ & = \frac {a \sqrt {a+b \sec ^2(e+f x)}}{f}+\frac {\left (a+b \sec ^2(e+f x)\right )^{3/2}}{3 f}+\frac {a^2 \text {Subst}\left (\int \frac {1}{-\frac {a}{b}+\frac {x^2}{b}} \, dx,x,\sqrt {a+b \sec ^2(e+f x)}\right )}{b f} \\ & = -\frac {a^{3/2} \text {arctanh}\left (\frac {\sqrt {a+b \sec ^2(e+f x)}}{\sqrt {a}}\right )}{f}+\frac {a \sqrt {a+b \sec ^2(e+f x)}}{f}+\frac {\left (a+b \sec ^2(e+f x)\right )^{3/2}}{3 f} \\ \end{align*}

Mathematica [C] (verified)

Result contains higher order function than in optimal. Order 5 vs. order 3 in optimal.

Time = 0.33 (sec) , antiderivative size = 84, normalized size of antiderivative = 1.08 \[ \int \left (a+b \sec ^2(e+f x)\right )^{3/2} \tan (e+f x) \, dx=\frac {2 b \operatorname {Hypergeometric2F1}\left (-\frac {3}{2},-\frac {3}{2},-\frac {1}{2},-\frac {a \cos ^2(e+f x)}{b}\right ) \left (a+b \sec ^2(e+f x)\right )^{3/2}}{3 f \sqrt {1+\frac {a \cos ^2(e+f x)}{b}} (a+2 b+a \cos (2 (e+f x)))} \]

[In]

Integrate[(a + b*Sec[e + f*x]^2)^(3/2)*Tan[e + f*x],x]

[Out]

(2*b*Hypergeometric2F1[-3/2, -3/2, -1/2, -((a*Cos[e + f*x]^2)/b)]*(a + b*Sec[e + f*x]^2)^(3/2))/(3*f*Sqrt[1 +
(a*Cos[e + f*x]^2)/b]*(a + 2*b + a*Cos[2*(e + f*x)]))

Maple [A] (verified)

Time = 0.14 (sec) , antiderivative size = 81, normalized size of antiderivative = 1.04

method result size
derivativedivides \(\frac {\left (a +b \sec \left (f x +e \right )^{2}\right )^{\frac {3}{2}}}{3 f}-\frac {a^{\frac {3}{2}} \ln \left (\frac {2 a +2 \sqrt {a}\, \sqrt {a +b \sec \left (f x +e \right )^{2}}}{\sec \left (f x +e \right )}\right )}{f}+\frac {a \sqrt {a +b \sec \left (f x +e \right )^{2}}}{f}\) \(81\)
default \(\frac {\left (a +b \sec \left (f x +e \right )^{2}\right )^{\frac {3}{2}}}{3 f}-\frac {a^{\frac {3}{2}} \ln \left (\frac {2 a +2 \sqrt {a}\, \sqrt {a +b \sec \left (f x +e \right )^{2}}}{\sec \left (f x +e \right )}\right )}{f}+\frac {a \sqrt {a +b \sec \left (f x +e \right )^{2}}}{f}\) \(81\)

[In]

int((a+b*sec(f*x+e)^2)^(3/2)*tan(f*x+e),x,method=_RETURNVERBOSE)

[Out]

1/3*(a+b*sec(f*x+e)^2)^(3/2)/f-1/f*a^(3/2)*ln((2*a+2*a^(1/2)*(a+b*sec(f*x+e)^2)^(1/2))/sec(f*x+e))+a*(a+b*sec(
f*x+e)^2)^(1/2)/f

Fricas [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 163 vs. \(2 (66) = 132\).

Time = 0.60 (sec) , antiderivative size = 373, normalized size of antiderivative = 4.78 \[ \int \left (a+b \sec ^2(e+f x)\right )^{3/2} \tan (e+f x) \, dx=\left [\frac {3 \, a^{\frac {3}{2}} \cos \left (f x + e\right )^{2} \log \left (128 \, a^{4} \cos \left (f x + e\right )^{8} + 256 \, a^{3} b \cos \left (f x + e\right )^{6} + 160 \, a^{2} b^{2} \cos \left (f x + e\right )^{4} + 32 \, a b^{3} \cos \left (f x + e\right )^{2} + b^{4} - 8 \, {\left (16 \, a^{3} \cos \left (f x + e\right )^{8} + 24 \, a^{2} b \cos \left (f x + e\right )^{6} + 10 \, a b^{2} \cos \left (f x + e\right )^{4} + b^{3} \cos \left (f x + e\right )^{2}\right )} \sqrt {a} \sqrt {\frac {a \cos \left (f x + e\right )^{2} + b}{\cos \left (f x + e\right )^{2}}}\right ) + 8 \, {\left (4 \, a \cos \left (f x + e\right )^{2} + b\right )} \sqrt {\frac {a \cos \left (f x + e\right )^{2} + b}{\cos \left (f x + e\right )^{2}}}}{24 \, f \cos \left (f x + e\right )^{2}}, \frac {3 \, \sqrt {-a} a \arctan \left (\frac {{\left (8 \, a^{2} \cos \left (f x + e\right )^{4} + 8 \, a b \cos \left (f x + e\right )^{2} + b^{2}\right )} \sqrt {-a} \sqrt {\frac {a \cos \left (f x + e\right )^{2} + b}{\cos \left (f x + e\right )^{2}}}}{4 \, {\left (2 \, a^{3} \cos \left (f x + e\right )^{4} + 3 \, a^{2} b \cos \left (f x + e\right )^{2} + a b^{2}\right )}}\right ) \cos \left (f x + e\right )^{2} + 4 \, {\left (4 \, a \cos \left (f x + e\right )^{2} + b\right )} \sqrt {\frac {a \cos \left (f x + e\right )^{2} + b}{\cos \left (f x + e\right )^{2}}}}{12 \, f \cos \left (f x + e\right )^{2}}\right ] \]

[In]

integrate((a+b*sec(f*x+e)^2)^(3/2)*tan(f*x+e),x, algorithm="fricas")

[Out]

[1/24*(3*a^(3/2)*cos(f*x + e)^2*log(128*a^4*cos(f*x + e)^8 + 256*a^3*b*cos(f*x + e)^6 + 160*a^2*b^2*cos(f*x +
e)^4 + 32*a*b^3*cos(f*x + e)^2 + b^4 - 8*(16*a^3*cos(f*x + e)^8 + 24*a^2*b*cos(f*x + e)^6 + 10*a*b^2*cos(f*x +
 e)^4 + b^3*cos(f*x + e)^2)*sqrt(a)*sqrt((a*cos(f*x + e)^2 + b)/cos(f*x + e)^2)) + 8*(4*a*cos(f*x + e)^2 + b)*
sqrt((a*cos(f*x + e)^2 + b)/cos(f*x + e)^2))/(f*cos(f*x + e)^2), 1/12*(3*sqrt(-a)*a*arctan(1/4*(8*a^2*cos(f*x
+ e)^4 + 8*a*b*cos(f*x + e)^2 + b^2)*sqrt(-a)*sqrt((a*cos(f*x + e)^2 + b)/cos(f*x + e)^2)/(2*a^3*cos(f*x + e)^
4 + 3*a^2*b*cos(f*x + e)^2 + a*b^2))*cos(f*x + e)^2 + 4*(4*a*cos(f*x + e)^2 + b)*sqrt((a*cos(f*x + e)^2 + b)/c
os(f*x + e)^2))/(f*cos(f*x + e)^2)]

Sympy [F]

\[ \int \left (a+b \sec ^2(e+f x)\right )^{3/2} \tan (e+f x) \, dx=\int \left (a + b \sec ^{2}{\left (e + f x \right )}\right )^{\frac {3}{2}} \tan {\left (e + f x \right )}\, dx \]

[In]

integrate((a+b*sec(f*x+e)**2)**(3/2)*tan(f*x+e),x)

[Out]

Integral((a + b*sec(e + f*x)**2)**(3/2)*tan(e + f*x), x)

Maxima [F]

\[ \int \left (a+b \sec ^2(e+f x)\right )^{3/2} \tan (e+f x) \, dx=\int { {\left (b \sec \left (f x + e\right )^{2} + a\right )}^{\frac {3}{2}} \tan \left (f x + e\right ) \,d x } \]

[In]

integrate((a+b*sec(f*x+e)^2)^(3/2)*tan(f*x+e),x, algorithm="maxima")

[Out]

integrate((b*sec(f*x + e)^2 + a)^(3/2)*tan(f*x + e), x)

Giac [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 867 vs. \(2 (66) = 132\).

Time = 1.00 (sec) , antiderivative size = 867, normalized size of antiderivative = 11.12 \[ \int \left (a+b \sec ^2(e+f x)\right )^{3/2} \tan (e+f x) \, dx=\text {Too large to display} \]

[In]

integrate((a+b*sec(f*x+e)^2)^(3/2)*tan(f*x+e),x, algorithm="giac")

[Out]

2/3*(3*a^2*arctan(-1/2*(sqrt(a + b)*tan(1/2*f*x + 1/2*e)^2 - sqrt(a*tan(1/2*f*x + 1/2*e)^4 + b*tan(1/2*f*x + 1
/2*e)^4 - 2*a*tan(1/2*f*x + 1/2*e)^2 + 2*b*tan(1/2*f*x + 1/2*e)^2 + a + b) + sqrt(a + b))/sqrt(-a))*sgn(cos(f*
x + e))/sqrt(-a) + 2*(3*(sqrt(a + b)*tan(1/2*f*x + 1/2*e)^2 - sqrt(a*tan(1/2*f*x + 1/2*e)^4 + b*tan(1/2*f*x +
1/2*e)^4 - 2*a*tan(1/2*f*x + 1/2*e)^2 + 2*b*tan(1/2*f*x + 1/2*e)^2 + a + b))^5*(2*a*b + b^2)*sgn(cos(f*x + e))
 - 3*(sqrt(a + b)*tan(1/2*f*x + 1/2*e)^2 - sqrt(a*tan(1/2*f*x + 1/2*e)^4 + b*tan(1/2*f*x + 1/2*e)^4 - 2*a*tan(
1/2*f*x + 1/2*e)^2 + 2*b*tan(1/2*f*x + 1/2*e)^2 + a + b))^4*(6*a*b - b^2)*sqrt(a + b)*sgn(cos(f*x + e)) + 2*(6
*a^2*b - 15*a*b^2 - b^3)*(sqrt(a + b)*tan(1/2*f*x + 1/2*e)^2 - sqrt(a*tan(1/2*f*x + 1/2*e)^4 + b*tan(1/2*f*x +
 1/2*e)^4 - 2*a*tan(1/2*f*x + 1/2*e)^2 + 2*b*tan(1/2*f*x + 1/2*e)^2 + a + b))^3*sgn(cos(f*x + e)) + 6*(2*a^2*b
 + 7*a*b^2 + b^3)*(sqrt(a + b)*tan(1/2*f*x + 1/2*e)^2 - sqrt(a*tan(1/2*f*x + 1/2*e)^4 + b*tan(1/2*f*x + 1/2*e)
^4 - 2*a*tan(1/2*f*x + 1/2*e)^2 + 2*b*tan(1/2*f*x + 1/2*e)^2 + a + b))^2*sqrt(a + b)*sgn(cos(f*x + e)) - 3*(6*
a^3*b - a^2*b^2 - 28*a*b^3 - 5*b^4)*(sqrt(a + b)*tan(1/2*f*x + 1/2*e)^2 - sqrt(a*tan(1/2*f*x + 1/2*e)^4 + b*ta
n(1/2*f*x + 1/2*e)^4 - 2*a*tan(1/2*f*x + 1/2*e)^2 + 2*b*tan(1/2*f*x + 1/2*e)^2 + a + b))*sgn(cos(f*x + e)) + (
6*a^3*b - 21*a^2*b^2 + 28*a*b^3 + 7*b^4)*sqrt(a + b)*sgn(cos(f*x + e)))/((sqrt(a + b)*tan(1/2*f*x + 1/2*e)^2 -
 sqrt(a*tan(1/2*f*x + 1/2*e)^4 + b*tan(1/2*f*x + 1/2*e)^4 - 2*a*tan(1/2*f*x + 1/2*e)^2 + 2*b*tan(1/2*f*x + 1/2
*e)^2 + a + b))^2 - 2*(sqrt(a + b)*tan(1/2*f*x + 1/2*e)^2 - sqrt(a*tan(1/2*f*x + 1/2*e)^4 + b*tan(1/2*f*x + 1/
2*e)^4 - 2*a*tan(1/2*f*x + 1/2*e)^2 + 2*b*tan(1/2*f*x + 1/2*e)^2 + a + b))*sqrt(a + b) + a - 3*b)^3)/f

Mupad [B] (verification not implemented)

Time = 23.60 (sec) , antiderivative size = 66, normalized size of antiderivative = 0.85 \[ \int \left (a+b \sec ^2(e+f x)\right )^{3/2} \tan (e+f x) \, dx=\frac {{\left (a+\frac {b}{{\cos \left (e+f\,x\right )}^2}\right )}^{3/2}}{3\,f}-\frac {a^{3/2}\,\mathrm {atanh}\left (\frac {\sqrt {a+\frac {b}{{\cos \left (e+f\,x\right )}^2}}}{\sqrt {a}}\right )}{f}+\frac {a\,\sqrt {a+\frac {b}{{\cos \left (e+f\,x\right )}^2}}}{f} \]

[In]

int(tan(e + f*x)*(a + b/cos(e + f*x)^2)^(3/2),x)

[Out]

(a + b/cos(e + f*x)^2)^(3/2)/(3*f) - (a^(3/2)*atanh((a + b/cos(e + f*x)^2)^(1/2)/a^(1/2)))/f + (a*(a + b/cos(e
 + f*x)^2)^(1/2))/f